Winding numbers and SU (2)-representations of knot groups

نویسنده

  • Dylan Bowden
چکیده

Given an abelian group A and a Lie group G, we construct a bilinear pairing from A× π1(R) to π1(G), where R is a subvariety of the variety of representations A → G. In the case where A is the peripheral subgroup of a torus or twobridge knot group, G = S1 and R is a certain variety of representations arising from suitable SU(2)-representations of the knot group, we show that this pairing is not identically zero. We discuss the consequences of this result for the SU(2)-representations of fundamental groups of manifolds obtained by Dehn surgery on such knots.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersecting Branes Flip SU ( 5 )

Within a toroidal orbifold framework, we exhibit intersecting brane-world constructions of flipped SU(5) × U(1) GUT models with various numbers of generations, other chiral matter representations and Higgs representations. We exhibit orientifold constructions with integer winding numbers that yield 8 or more conventional SU(5) generations, and orbifold constructions with fractional winding numb...

متن کامل

ar X iv : h ep - t h / 02 06 08 7 v 1 1 1 Ju n 20 02 ACT - 05

Within a toroidal orbifold framework, we exhibit intersecting brane-world constructions of flipped SU(5) × U(1) GUT models with various numbers of generations, other chiral matter representations and Higgs representations. We exhibit orientifold constructions with integer winding numbers that yield 8 or more conventional SU(5) generations, and orbifold constructions with fractional winding numb...

متن کامل

A Comparative Study in Learning Curves of Two Different Intracorporeal Knot Tying Techniques.

Objectives. In our study we are aiming to analyse the learning curves in our surgical trainees by using two standard methods of intracorporeal knot tying. Material and Method. Two randomized groups of trainees are trained with two different intracorporeal knot tying techniques (loop and winding) by single surgeon for eight sessions. In each session participants were allowed to make as many numb...

متن کامل

Chern-Simons and winding number in a tachyonic electroweak transition

We investigate the development of winding number and Chern-Simons number in a tachyonic transition in the SU(2) Higgs model, motivated by the scenario of cold electroweak baryogenesis. We find that localized configurations with approximately halfinteger winding number, dubbed half-knots, play an important role in this process. When the Chern-Simons number adjusts locally to the winding number, ...

متن کامل

A volume form on the SU(2)–representation space of knot groups

In 1985, A. Casson constructed an integer valued invariant of integral homology 3– spheres. The original definition of Casson’s invariant is based on SU(2)–representation spaces. Informally speaking, the Casson invariant of an homology 3–sphere M counts algebraically the number of conjugacy classes of irreducible SU(2)–representations of π1(M) in the same sense that the Lefschetz number of a ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008